SELFISH MINING RE-EXAMINED

Kevin Alarcón Negy¹, Peter Rizun², Emin Gün Sirer¹

¹Computer Science Department, Cornell University ²Bitcoin Unlimited

Bitcoin folk theorems

Incentive compatibility

Hash power is proportional to winnings

Joining a mining pool does not increase chance of winning

Selfish mining

- Showed that deviant mining could be more profitable than following the Bitcoin protocol for minority miners
- The original selfish mining analysis focused only on profitability in the domain of Bitcoin
- There are ~2000 cryptocurrencies, with different difficulty adjustment algorithms
- Profitability depends on difficulty adjustment algorithm (DAA)

Critiques of selfish mining

- Over the years, critics have denied the feasibility of selfish mining with a variety of arguments
- Ignoring outlandish claims, two worth examining are:
 - 1. Selfish mining is unprofitable because it does not increase per time-unit profits
 - 2. Selfish mining must persist post-difficulty adjustment to be profitable

Our contributions

We show that these arguments are false

- Introduce intermittent selfish mining strategy, which shows that a selfish miner can profit without continuing the attack past a difficulty adjustment
- Provide comparative analysis of BTC, ETH, XMR, and BCH/BSV DAAs
- Analyze per time-unit profitability of selfish mining with these DAAs

Intermittent selfish mining

- Alternate between selfish and honest mining to manipulate block difficulty
- Phase one: Selfishly mine to amplify time to next difficulty adjustment
- Phase two: Switch to honest mining to profit from lower difficulty

Phase two benefits all miners by increase block mint rate

Intermittent selfish mining illustrated

Difficulty vs. timestep

An intermittent selfish miner (ISM) causes difficulty to oscillate every adjustment period.

Block win-rate vs. timestep

An ISM with α = 49% doubles the number of blocks to adjust difficulty, then immediately profits.

Block win-rate vs. timestep

An ISM with α = 49% doubles the number of blocks to adjust difficulty, then immediately profits.

Block win-rate vs. timestep

An ISM with α = 49% doubles the number of blocks to adjust difficulty, then immediately profits.

Block win-rate vs. hash rate

When $\gamma = 0$, an ISM with $\alpha = 37\%$ earns more than through honest mining per time-unit.

Difficulty Adjustment Algorithm Analysis

- Period-based
- Incrementally-extrapolated
- Sliding-window

- Period-based
- Incrementally-extrapolated
- Sliding-window

- Period-based
- Incrementally-extrapolated
- Sliding-window

Bitcoin: w = 2016

- Period-based
- Incrementally-extrapolated
- Sliding-window

Bitcoin:
$$\tau_p = \frac{\left(\tau_{p-1}*(F_{time}-D_{time})\right)}{(\tau_{exp}.*w)}$$

- Period-based
- Incrementally-extrapolated
- Sliding-window

- Period-based
- Incrementally-extrapolated
- Sliding-window

- Period-based
- Incrementally-extrapolated
- Sliding-window

$$A - B - C - D - E - F - G$$

Ethereum:
$$\tau_G = \tau_F + \left(\frac{\tau_F}{2048} * \left(1 - \frac{G_{time} - F_{time}}{9}\right)\right)$$

- Period-based
- Incrementally-extrapolated
- Sliding-window

$$\Box - \Box - \Box - E - E - G$$

Ethereum:
$$\tau_G = \tau_F + \left(\frac{\tau_F}{2048} * \left(1 - \frac{G_{time} - F_{time}}{9}\right)\right)$$

Adjustment factor

- Period-based
- Incrementally-extrapolated
- Sliding-window

- Period-based
- Incrementally-extrapolated
- Sliding-window

- Period-based
- Incrementally-extrapolated
- Sliding-window

$$3SV/BCH: w = 144 \qquad XMR: w = 600$$

- Period-based
- Incrementally-extrapolated
- Sliding-window

$$\mathsf{BSV/BCH:} \frac{\left(\sum_{i=n}^{n+w} \tau_i\right)}{G_{time} - C_{time}} \qquad \mathsf{XMR:} \frac{\left(\sum_{i=n}^{n+w} \tau_i\right) * 120 + (G_{time} - C_{time}) - 1}{G_{time} - C_{time}}$$

Evaluation

- How effective are DAAs at adjusting difficulty if a substantial amount of hash power is introduced to the network?
- How does difficulty affect the block win-rate of a new miner?
- How do these DAAs react to a new selfish miner?

Difficulty adjustment with a new honest miner

Block win-rate of a new honest miner

Block win-rate of a new selfish miner

Relative revenue of a new selfish miner

Findings

- Selfish mining does not need to persist past a difficulty adjustment to be profitable
- Above a threshold, selfish mining is profitable per time-unit regardless of DAA choice
- The choice of DAAs can exacerbate the selfish mining threat
- Ethereum is vulnerable due to uncle block rewards

Summary

- Introduced novel intermittent selfish mining strategy
- Provided a taxonomy for difficulty adjustment algorithms
- Analyzed the profitability of selfish mining with various DAAs

Whither selfish mining?

- Deviant miners do not self-report
- Miners have stake in the system and after-effects are unknown
- Miners may lack know-how to implement selfish mining

For popular cryptocurrencies, the hash power required is too expensive for a single adversary to acquire

Gamma values

γ: proportion of honest miners who mine on the selfish block in a fork

• $\gamma = 1$: selfish miner wins all forks

• $\gamma = 0$: selfish miner loses all forks

• $\gamma < 0$: nonsense

Difficulty adjustment with a new selfish miner

Difficulty adjustment with an existing selfish miner

Block win-rate of an existing selfish miner

Block win-rate of an existing selfish miner

